

ANANDALAYA PERIODIC TEST - 2 Class: XII

(1)

(1)

General Instructions:

- 1. This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
- 5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment of 4 marks each with sub-parts.
- 7. All Questions are compulsory. However, an internal choice in 2 questions of 2 marks, 2 questions of 3 marks and 2 Questions of 5 marks has been provided.

SECTION - A

- For what value of x, the given matrix $\begin{bmatrix} 3-2x & x+1 \\ 2 & 4 \end{bmatrix}$ is a singular matrix? 1. (1)1 (A) 1 (B) −1 (C) 0 (D)
- 2.

7.

If the matrix $A = \begin{bmatrix} 0 & a & 8 \\ 5 & 0 & 12 \\ b & -12 & c \end{bmatrix}$ is a skew symmetric matrix then a + b + c =_____. (1)(A) 13 (C) -33 -13(D) **(B)**

1

Write the principal value of $\tan^{-1}\left[\sin\left(\frac{-\pi}{2}\right)\right]$. (A) $-\frac{\pi}{4}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ 3.

- (D)
- The function f(x) = |x 1| + |x + 1| for all $x \in R$ is _____. 4.
 - continuous, but not differentiable at x = 1 and x = -1(A)
 - **(B)** differentiable, but not continuous at x = 1 and x = -1
 - continuous , but not differentiable at x = 1 only (C)
 - neither continuous nor differentiable at x = 1 and x = -1(D)

5. If
$$y = cos(sinx^2)$$
, find $\frac{dy}{dx}$ at $x = \sqrt{\frac{\pi}{2}}$.
(A) 1 (B) -1 (C) 0 (D) $-\frac{1}{2}$
(1)

- A particle moves along the curve $6y = x^3 + 2$. Find the points on the curve at which the y- (1) 6. coordinate is changing 8 times as fast as the *x*-coordinate.
 - (4, 11) and $\left(-4, \frac{31}{3}\right)$ (A) (B) (4, -11) and (-4, 4)(D) (4, -11) and $\left(-4, -\frac{31}{3}\right)$ (4, 11) and $\left(-4, -\frac{31}{3}\right)$ (C) The function $f(x) = x^2 - 8x$ is strictly decreasing on _____. (1)
 - (B) $(-\infty, 4)$ (C) $(8, \infty)$ (D) $(-\infty, -4)$ (A) (4,∞)

8.	$\int \cot x \log(\sin x) dx = $				(1)
	(A) $\frac{1}{2}[\log(cosx)]^2$ (B) $\frac{1}{4}[\log(sinx)]^2$	(C) $\frac{1}{2} [\log (cotx)]^2$	(D)	$\frac{1}{2}[\log(sinx)]^2$	
9.	Find $\frac{dy}{dx}$, if $xy = 100(x + y)$				(1)
	(A) $\frac{(100-y)}{(100-x)}$ (B) $\frac{(100-y)}{(x-100)}$	(C) $\frac{50}{(x-100)}$	(D)	$\frac{(y-100)}{(x-100)}$	
10.	If the matrix $A = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}$, is the square root of t	the 2 \times 2 identity ma	trix, the	n find the relation	(1)
	between <i>a</i> , <i>b</i> and <i>c</i> . (A) $a^2 + bc = 0$ (B) $a^2 + bc = 1$				
11.	Let $X = \{-1, 0, 1\}$ and $Y = \{0, 1, 2\}$ a function f :			is	(1)
		(B) one-one but n(D) many one - in			
12.	Evaluate : $\int \frac{tan^5 x \sec^2 x}{tan^{12} x + 1} dx$				(1)
	6	(B) $\tan^{-1}(\tan^6 x)$			
	(C) $\frac{1}{6}\log(tan^6x) + C$	(D) $\frac{1}{6} \tan^{-1}(\tan^{10})$	$(x^{2}x) + 0$		
13.	Given that $\tan^{-1}(\tan\theta) = \theta$, then $\theta \in $	Γπ]			(1)
	(A) $\left(0, \frac{\pi}{2}\right)$ (B) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (C)	$\left[-\frac{\pi}{2}, 0\right]$ (D)	(0, π)		
14.	If $f(x) = x \tan^{-1} x$ then $f'(1) = $ A) $1 + \frac{\pi}{4}$ (B) $\frac{\pi}{4}$	(\mathbf{C}) 1	(\mathbf{D})	1 π	(1)
		-		$\frac{-}{2} + \frac{-}{4}$	(1)
15.	Find the value of k so that $f(x) = \begin{cases} \frac{x^2 + 3x - 10}{x - 2} & , \\ k & , \end{cases}$	$x \neq 2$ x = 2 is continuous	s at 2.		(1)
	(A) -7 (B) 7	(C) 2	(D)	1	
16.	The value of $\int_0^{\frac{\pi^2}{4}} \frac{\cos \sqrt{x}}{\sqrt{x}} dx = $				(1)
		(C) 2	(D)	π	
17.	If $\int \frac{1}{\sqrt{4-9x^2}} dx = \frac{1}{3} \sin^{-1}(ax) + C$, find the value	of <i>a</i> is			(1)
	If $\int \frac{1}{\sqrt{4-9x^2}} dx = \frac{1}{3} \sin^{-1}(ax) + C$, find the value (A) $\frac{2}{3}$ (B) $\frac{3}{2}$	(C) 3	(D)	9 4	
18.	Let N be the set of natural numbers and relation R of $R = \{(x, y): x, y \in N, x + 4y = 10\}$. R is(A) reflexive (B) sym	 nmetric			(1)
	(C) not reflexive and not symmetric (D) reflexive but not symmetric				
	In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R).				

Choose the correct answer out of the following choices.

(A) Both A and R are true and R is the correct explanation of A.

(B) Both A and R are true but R is not the correct explanation of A.

(C) A is true but R is false.

(D) A is false but R is true.

- : In set $A = \{a, e, i\}$ a relation R defined as $R = \{(i, i), (a, a)\}$ is reflexive. 19 (A)
 - : A relation R is reflexive in set A if $(a, a) \in R$ for all $a \in A$. (R)
- 20 (A) : The points A (2,3), B (-1,-2) and C(5, 8) are collinear.
 - : The points A (x_1, y_1) , B (x_2, y_2) and C (x_3, y_3) are collinear if and only if area of (R) $\triangle ABC$ is zero.

SECTION – B

}.

^{21.} Find the principal value of
$$\tan^{-1}\left\{2\sin\left(2\cos^{-1}\frac{\sqrt{3}}{2}\right)\right\}$$

Evaluate : $\int \sqrt{1 + 2 \tan x (\tan x + \sec x)} dx$. 22. OR

Evaluate : $\int_0^{\frac{\pi}{4}} (tan^2x + tan^4x) dx$.

Show that the points (a + 5, a - 4), (a - 2, a + 3) and (a, a) do not lie on a straight line for (2) 23. any value of *a*.

OR

- If A_{ij} is the co-factor of the element a_{ij} of the determinant $\begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}$, then write the value of $a_{32} \times A_{32} + a_{23} \times A_{23}$.
- 24. A function $f: N \to N$ defined as $f(x) = 3x^2 7$. Show that f(x) is one- one but not onto, For (2)any two natural numbers x_1, x_2 .
- Separate $\left(0, \frac{\pi}{2}\right)$ into subintervals in which the function f(x) = sin3x is increasing or decreasing. 25. (2)

SECTION - C

- Check whether the relation R defined in the set $\{1, 2, 3, 4, 5, 6\}$ as $R = \{(a, b) : b = a + 1\}$ is 26. (3) reflexive, symmetric or transitive.
- ^{27.} If $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$, such that $A^{-1} = kA$, then find the value of k. (3)

If A and B are two square matrices of order 2 such that $2A + 3B = I_2$ and $A + B = 2A^T$. Show that $A = \frac{1}{5}I_2$.

Evaluate : $\int_0^{\frac{\pi}{4}} \frac{tan^3x}{1+cos^2x} dx$ 28. (3)

OR

Evaluate : $\int \frac{\sqrt{tanx}}{\sin^2 x} dx$ If $A = \begin{bmatrix} x & -3 & 1 \\ 2 & y & 1 \\ 1 & 1 & z \end{bmatrix}$ and xyz = 7, x + y - 6z = 11, find A. adjA 29. (3)

- If $x = ae^{\theta}(sin\theta cos\theta)$ and $y = ae^{\theta}(sin\theta + cos\theta)$ find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{4}$ 30. (3)
- Find the intervals in which the function f given by $f(x) = 8 + 36x + 3x^2 2x^3$ is increasing or 31. (3)decreasing. **SECTION - D**

32. If
$$A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 2 \\ -3 & 1 & -1 \end{bmatrix}$$
, find A^{-1} and hence solve the system of equations:
 $2x + y - 3z = 13$; $3x + 2y + z = 4$; $x + 2y - z = 8$ (5)

(1)

(1)

(2)

(2)

33. If
$$y = x \log\left(\frac{x}{a+bx}\right)$$
, prove that $\frac{d^2y}{dx^2} = \frac{1}{x} \left(\frac{a}{a+bx}\right)^2$. (5)

If
$$x = a(\theta + sin\theta)$$
, $y = a(1 + cos\theta)$, find $\frac{d^2y}{dx^2}$ at $\theta = \frac{\pi}{2}$.

34. Evaluate : $\int \frac{x}{x^3+x^2+x+1} dx$.

Λ

ГЭ

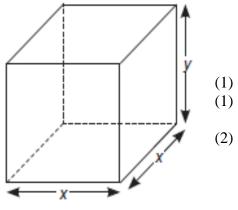
Show that $\int_0^{\frac{\pi}{4}} \log(1 + tan\theta) d\theta = \frac{\pi}{8} \log 2$

11

~ -	4	. 0	
35.	If $A = 2$. 1	3, Find $A^2 - 5A + 4I$. Hence find a matrix X such that $A^2 - 5A + 4I + X = 0$.
		-1	

SECTION –E

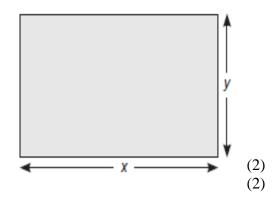
OR

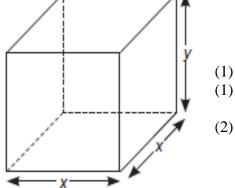

- 36. Saurabh and Raji were playing Ludo at home. While rolling the die, Saurabh's sister Aditi observed and noted that a possible outcome of the throw every time belongs to set {1, 2, 3, 4, 5, 6}. Let A be the set of players while *B* be the set of all possible outcomes.
 - $A = \{S, R\},\$ $B = \{1, 2, 3, 4, 5, 6\}$
 - i) Let $R : B \to B$ be defined by $R = \{(x, y) : y \text{ is divisible by } x\}$. Is the relation R symmetric? (1)
 - ii) Write the identity relation from $B \rightarrow B$
 - (2)iii) Let *R* be a relation on *B* defined by $R = \{(1, 2), (2, 2), (1, 3), (3, 4), (3, 1), (4, 3), (5, 5)\}$. Then check whether *R* is an equivalence relation.

OR

- iii) Aditi wants to know the number of relations from A to B. How many number of relations are possible?
- A given quantity of metal sheet is to be cast in to an open tank 37. with a square base and vertical sides as shown. Where x be the side of base square and y be the vertical side. Answer the following based on above information.
 - i) If V represent the volume of tank, then find relation between V, x and y.
 - ii) Find the total area of tank, expressed as function of x, in terms of V.
 - iii) Find x in terms of V when total surface area of tank is minimum.
 - OR
 - iii) Represent the relation in y and x, so that the area is minimum.
- 38. Manjit wants to donate a rectangular plot of land for a school in his village. When he was asked to give dimensions of the plot, he told that if its length is decreased by 50 m and breadth is increased by 50 m, then its area will remain the same, but if length is decreased by 10 m and breadth is decreased by 20 m, then its area will decrease by 5300 m^2 .

Based on the information given above, answer the following questions


- i) The equations in terms of x and y are _____
- ii) Find the matrix equation represented by the given information.



(5)

(5)

(1)

